If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84x-4x^2=264
We move all terms to the left:
84x-4x^2-(264)=0
a = -4; b = 84; c = -264;
Δ = b2-4ac
Δ = 842-4·(-4)·(-264)
Δ = 2832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2832}=\sqrt{16*177}=\sqrt{16}*\sqrt{177}=4\sqrt{177}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-4\sqrt{177}}{2*-4}=\frac{-84-4\sqrt{177}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+4\sqrt{177}}{2*-4}=\frac{-84+4\sqrt{177}}{-8} $
| 9p=15 | | 2248*a=55944 | | 4(x-1)+3=4x | | 7x+2=4x=10 | | -3(x-9)=-3 | | 1/7x-11=1/4x-14 | | 9x-40=3x-30 | | 54.3d=800 | | 4=5-x=16 | | 11^5x=72 | | (x+4)-10=0 | | |3x+8|+9=0 | | -7x+30=-x-27 | | 4x=4-1/2 | | 2x+1/9=3x-5/8 | | 5u-3=22 | | 24x-10=20x+38 | | 16(x+2)-8=16x24 | | (2/3x)-4=x-(1/2) | | 1x-7x=-2 | | 5x^2=3x+3=-2x^2+3 | | 40-9x=4x | | 54n^2+36n=0 | | 12-2×(x-1)=16/5×(5/8x-1/4)+12 | | x/4-3/4+3/4=16+3/4 | | -41.42=9.1x+5.9 | | 11x^=8 | | -19-19j=9-6-17j | | -6w=10−5w | | -6n^2=-330 | | 35x-21=3=27x | | 2/3x-4=x-1/2 |